PRODUCT DESCRIPTION

OLI ScaleChem

ScaleChem is simulation software for the assessment of scaling problems in oil and gas production. ScaleChem is synonymous with accurate oilfield scaling prediction.

ScaleChem calculates the phase separation and scaling tendencies of brines at the extreme, HTHP conditions characteristic of today's well conditions.

ScaleChem has standard scales that include:

 $\begin{array}{ll} \mbox{anhydrite } CaSO_4 & \mbox{iron sulfide } FeS \\ \mbox{barite } BaSO_4 & \mbox{halite } NaCl \\ \mbox{calcite } CaCO_3 & \mbox{celestite } SrSO_4 \\ \mbox{gypsum } CaSO_4.2H2O \\ \mbox{siderite } FeCO_3 & \mbox{dolomite } CaMg(CO_3)_2 \end{array}$

and over 70+ less common scales

Scaling tendencies for every solid with a scaling index > 1.0E-05 will be reported for a calculation request which uses expanded solids.

FEATURES

•	Well Profiles	ScaleChem can be used to calculate scaling tendencies at user specified temperatures and pressures. Detailed phase reports and solids formation is given at each point.
•	Mixing Compatible Waters	Check the compatibility of different waters at user specified ratios, in order to find safe ratios (no solids formation) for injection and disposal operations.
•	Saturation at Reservoir Conditions	Saturate a water with respect to one or more solids to simulate reservoir conditions.

• Facilities Simulate the filtering, mixing and separating of waters in post-Calculations processing, surface operations.

PRODUCT DESCRIPTION

SCALECHEM

CHEMISTRY

Cations	H+, NH4+, Na+, Mg2+, K+, Ca2+, Sr2+,	Using OLI AQ thermodynamic model:		
(17 total)	Ba ²⁺ , Fe ²⁺ Al ³⁺ , Cs ⁺ , Cu ⁺ , Cu ²⁺ , Fe ³⁺ , Ni ²⁺ , Pb ²⁺ , Zn ²⁺		Model predicts & considers all of	
Anions (19 total)	OH-, Cl-, SO4 ²⁺ , HCO5 ⁻ , CO3 ²⁺ , SO3 ²⁺ , F ⁻ , B ⁻ , NO5 ⁻ , NO2 ⁻ , B(OH)4 ⁻ , H ₃ SiO4 ⁻ , HSO3 ⁻ , HSO4 ⁻ , S ² , COOH ⁻ , CH ₃ COO ⁻ , C ₂ H ₅ COO ⁻	Complete speciation	the true species in solution in the range of -50 to 300° C, 0 to 1500 bar, & 0 to 30 molal ionic strength.	
Solids (70+ total)	CaCO ₃ , FeCO ₃ , CaSO ₄ , CaSO ₄ ,H ₂ O, BaSO ₄ , SrSO ₄ , & NaCl plus the scales of F ⁻ , O ⁻² , OH ⁻ , Cl ⁻ , Br ⁻ , S ⁻² , S ^o , and organic Acids	Robust standard state framework	Based on the Helgeson equation of state, parameter regression and proprietary estimation techniques	
Soluble Organics	CO_2 , H_2S , CH_4 , $MeOH$, $EtOH$, MEG , H_3BO_3 , HNO_3 , HCl , H_2SO_4 , NH_3 , SiO_2 , Organic Acids from C1 to C4:	Activity Coefficients	Based on the combined work of Bromley, Zeimaitis, Meisnner, Pitzer and OLI technologists	
Gases	$\begin{array}{l} H_2S,CO_{2\prime}CH_{4,}C_2H_6,C_3H_8,n\cdot C_4H_{10\prime}i\cdot \\ C_4H_{10\prime}n\cdot C_5H_{12\prime}i\cdot C_5H_{12\prime}C_6H_{14\prime} \end{array}$	Thermo- physical	Unique chemical /physical based models to compute thermodynamic	
Hydro- carbons	Pure Components – C1-C20, Pseudocomponents per PVT or client data	properties	and transport properties for complex aqueous mixtures	

NOW SHIPPING V4

•	Hydrocarbon phase High-calcium brine predictions	Available for all calculations and defined in one of three ways as: Characteristic C1 - C20, Pseudocomponents, or Petroleum fractions. For petroleum fractions, ASTM D86, D1160, D2887 or TBP curves supported Updated literature searches and updated data regressions
•	Gas hydrate effects on brine chemistry	Methanol, ethanol and propylene glycol were added as components - These components used in gas hydrate treatment can have an effect on brine chemistry by influencing the water activity. Concentrations valid to 70% weight
•	Databanks consistent with	Updated 8/2010

•		Op
	Analyzer V3.1 / ESP 8.2	

CONTACT US	PHONE 973.539.4996 SALES 973.998-0240 FAX 973.539.5922	ADDRESS OLI Systems, Inc. 108 American Road Morris Plains, NJ 07950	EMAIL oli.info@olisystems.com oli.support@olisystems.com oli.sales@olisystems.com www.olisystems.com
------------	---	---	--